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Abstract. Model checking real programs has recently become an active research area. Programs how-
ever exhibit two characteristics that make model checking di�cult: the complexity of their state and
the dynamic nature of many programs. Here we address both these issues within the context of the
Java PathFinder (JPF) model checker. Firstly, we will show how the state of a Java program can be
encoded e�ciently and how this encoding can be exploited to improve model checking. Next we show
how to use symmetry reductions to alleviate some of the problems introduced by the dynamic nature of
Java programs. Lastly, we show how distributed model checking of a dynamic program can be achieved,
and furthermore, how dynamic partitions of the state space can improve model checking. We support
all our �ndings with results from applying these techniques within the JPF model checker.

1 Introduction

Software is playing an increasingly important role in our everyday lives, but sadly, so does software failure.
At NASA this point was made painfully clear in 1999 when the Mars Polar Lander was lost due to a software
related problem (estimated cost was $165 million) [Spa00]. Although most agree that many software failures
can, and must, be caught during the design phase, it is however often the case that a design phase is
either missing by itself, or the tools and techniques to analyze the designs are missing. Hence, testing an
implementation is still the number one way of �nding errors in software systems. Testing, however, can be
very expensive, but more importantly, it is often incapable of �nding subtle errors - e.g. timing errors in a
concurrent system.

Model checking has been used extensively to �nd subtle errors in hardware and protocol designs [BLPV95]
[CW96] [Hol91]. However, until recently, model checking has been deemed inadequate to analyze software
code, due to the high level of detail often found in code. Now there are many groups, from both industry
and academia, that are analyzing source code by model checking. Many of these source code model checkers
are based on a translation from source code to the input notation of a model checker: Bandera [CDH+00],
Java PathFinder 1 [HP98], JCAT [DIS99] are Java model checkers, and, AX [Hol00] and SLAM [BR00] are
C model checkers. A drawback of the translation approach is that certain language constructs are di�cult to
translate and hence two of these tools, JCAT (dSPIN [IS99]) and AX have extended their back-end model
checker (SPIN in both cases [Hol97a]) to improve e�ciency.

We adopted a di�erent approach by creating a custom-made model checker for Java. We call this tool
Java PathFinder (2), henceforth referred to as JPF. JPF is an explicit state model checker that takes as input
Java bytecode. It is structured as a search algorithm that uses a special Java virtual machine (JV MJPF )
to execute the bytecode instructions one at a time. In order to implement a depth �rst algorithm the
JVM

JPFneeds also to have a backtracking capability. The tool itself is written is Java and it's executed by
the Java virtual machine (just JVM from now on). By executing the bytecode we can not only analyze all of
Java, but we can also analyze programs without source code (e.g. libraries and code down-loaded over the
web), and other languages for which bytecode translations exist [BKR98] [Taf96] [CD98]. Recently JPF has
been integrated with the Bandera system [CDH+00]: in this case Bandera doesn't need to do any translation
because our tool is able to handle Java directly, but Bandera's functionality of slicing and abstraction are
available to improve the model checking.

If one looks at the history of model checking input notations, then it is clear that there has been an
evolution from simple guarded command style notations, to ones where more complex data-structures are



used. We believe this trend will continue and soon complex dynamic data-structures as well as other features
from typical programming languages will be common place. The purpose of this paper will be to highlight
some of the di�culties and possible solutions we have encountered in developing an e�cient model checker
that can handle dynamically evolving software systems. We hope this will help others when developing similar
systems.

Although it is clear that statically analyze a system before model checking can greatly bene�t the veri�ca-
tion, e.g. slicing a system with respect to a certain property to be checked, or �nding independent statements
to allow partial-order reductions, here we will focus mostly on purely dynamic optimizations for which no
prior information is required. The interested reader is referred to [VHBP00] where we discuss static analysis
for partial-order reductions and other techniques, such as abstraction, that JPF employs before doing model
checking.

Model checking software is often considered hard due to the complexity of the state of the system (this
is the premise of state-less model checking [God97] [Sto00]). We address this problem in section 2, by �rst
showing how a \large" state can be collapsed to a smaller one, how this can be exploited to improve explicit-
state model checking, how a novel form of symmetry reductions on the state can reduce the size of the state
space, and lastly, how garbage collection improves model checking. The state-space explosion problem can
be reduced, but it almost never goes away. Hence, the more memory one has the larger the programs that
can be checked. In section 3 we extend the distributed model checking algorithm �rst used for SPIN [LS99],
that exploits the memory of a number of workstations, to work in the dynamic context of Java. Section 4
contains conclusions and directions for future work.

2 Complexity of the State

One of the �rst issues we had to address was the complexity of the state. A limitation of the current model
checking tools is that they cannot handle dynamic structures. In fact dSPIN [IS99], an extension of the
model checking SPIN [Hol97a] used as a back-end in the Java model checker tool JCAT [DIS99], introduces
direct support for dynamic allocation.

2.1 The Representation of the State

In creating our own model checker, we were free to choose the representation of the state. Our aim was to
be able to handle dynamic allocation e�ciently and maintain our representation as close as possible to the
one suggested by the programming language. The state is composed of three main components:

static area : is an array of entries, one for each class loaded. Each entry contains the values of the static
�elds of the class and the monitor associated with it. The monitor contains information on the lock for
the class: which thread is holding the lock, which threads are waiting for the locks etc. When a new class
needs to be loaded a new entry in the static area is created and its �elds and monitor are initialized. Once
loaded a class will never be unloaded during the execution of an instruction { but it can be unloaded by
a backtracking step.

dynamic area : is an array of entries, one for each object. Each entry contains the values of the �elds and
the monitor1 associated with it. Objects are created explicitly by speci�c bytecode instructions. When
an object is created an entry is added in the dynamic area and its �elds and monitor are initialized.
Objects are not destroyed explicitly in Java, but they can be removed if not referenced anymore (see
Section 2.5).

thread list : is a list containing the information relative to each thread. It contains the status of the thread
together with other information used by the scheduler, and the stack frames created by the method calls.
A new entry is created when a new thread is created, and modi�ed each time the execution of a bytecode
instruction changes the state of the thread or one of its stack frames.

These three components are dynamic and they can grow and shrink freely during the execution of the
program, not imposing any limit on the size of the state. This is a novel feature, since in both SPIN, where
process are allocated dynamically, and dSPIN, where also data can be allocated dynamically, there is still a
limit imposed on the size of each state.

1 The �elds and monitor structures are the same used in the static area.



2.2 Collapsing the State

The dynamic features of the Java language, namely, class loading, object creation and method invocation,
require a complex data-structure to record the state of the system (see for example our state structure in
the previous section). Furthermore, in order to do e�cient explicit-state model checking one needs to record
the states that have been visited (often using a hash-table). From the examples2 in Table 1 one can clearly
see that it is very ine�cient to store the states in their original complex form: for both relatively simple Java
programs more than 2kB/state are required. Unlike in a tool such as SPIN where state compression is an
option, it is clear that for systems that require a more complex state description, compression should be a
requirement.

The \collapse" algorithm has been very successful for state compression in SPIN [Hol97b] and hence we
decided to extend it for use within JPF. The rationale behind the collapse method is that when a new state
is generated large parts of the state are unchanged. This would seem to call for the state to be stored as the
di�erence from the predecessor, but since states need to be compared to determine if a state has been visited
before, this would be ine�cient. What the collapse does is to associate to a particular part of the state an
index. The state can then be collapsed to a list of indexes indicating which components compose the state
itself. The decomposition must be unique so that by comparing the indexes it is possible to determine state
equality.

In order to generate the indexes we created a set of pools. Each pool is an ordered set without repetitions.
Every time a state needs to be stored it is �rst collapsed: each component is inserted into a pool, the pool
returns the index that corresponds to the position of that component in the pool. If the element was not
present in the pool it is added at the end, otherwise the index of the copy already present in the pool is
returned. The assumption is that the size of the pool is small enough because each single component appears
the same in many states.

In SPIN there are pools for the following state components: global variables, processes and asynchronous
channels. Asynchronous channels has no counterpart in Java, but one can think of global variables and static
�elds, and SPIN processes and JAVA threads to be similar. This would seem to imply that a good �rst
try for our state compression should include a pool for the static area, the dynamic area and the threads.
This, however, would be ine�cient, since each of these three components has further structure that can be
exploited. For example, an assignment to a �eld of an object would make the dynamic area and one thread
change, and hence create two large new pool entries. If we rather use a pool for each stack frame in each
thread and have a pool for each monitor and one for each �elds data entry then the above �eld assignment
would only change one stack frame entry (the one for the method with the assignment, while leaving all
other frames in the thread to collapse to their old values) and one �elds entry. When deciding on which
components to compress one should always pick components that would not change too often, in order to
get maximum bene�t. We therefore choose a pool for each of the following: �elds data (from both the static
and dynamic area), monitor data (again shared between static and dynamic area), method stack frames and
lastly one for other thread information (such as the thread status, that seldom changes).

As can be seen in Table 1, when the compression algorithm is used the number of di�erent elements in
the pools is quite small and the reduction of the memory requirements is impressive. Note that the execution
time is reduced as well. When a new state is store it is compared to other states to see if it has already
been visited. This operation is highly ine�cient when two uncompressed states are compared because of the
complexity of the states themselves, but it is quite e�cient when the compressed states (namely arrays of
integers) are compared.

2.3 Optimizing the Backtrack

Although compression made JPF usable, it was clearly still too slow and used too much memory to handle
large examples. Pro�ling the system revealed that the problem was the way we handled backtracking. Unlike
SPIN we decided to store a copy of each state on the depth-�rst stack for backtracking purposes | SPIN
uses a backwards transition to unwind moves when backtracking, if the state change is too large however
a copy of the previous state is used. The reason for this was that we worked on the bytecode level and

2 The examples used in this and the following tables are available from the JPF web-page http://ase.arc.nasa.gov/jpf



States Transitions Pools Entries

RemoteAgent 66,425 148,825 1,373

Memory Time State Size

(MB) (sec) (bytes)

No Compression 180.79 227.83 2854

Collapse 12.08 138.65 191

Optimized Backtrack 12.08 54.39 191

States Transitions Pools Entries

BoundedBu�er 105682 275988 583

Memory Time State Size

(MB) (sec) (bytes)

No Compression 504.82 665.90 5009

Collapse 28.17 297.40 445

Optimized Backtrack 28.16 76.82 445

Table 1. Comparison of JPF using no compression, collapse, and optimized backtrack

often one Java statement3 can correspond to many bytecode instructions, hence unwinding each bytecode
instruction seemed too complicated. The graph in Figure 1 shows how the memory usage before optimizing
the backtracking varies during the visit as new states are reached. In the same graph (with a di�erent scale)
the depth of the stack is shown. It is evident how the memory usage is strictly related to the depth of the
stack because the uncompressed state is stored on the stack.
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Fig. 1. Memory usage during execution with and without optimized backtracking. Stack depth is also represented in
a di�erent scale

A very simple, and above all novel solution presented itself: store the compressed state on the stack and
use the reverse of the collapse operation to re-create the original state when backtracking. In fact, only store

3 Although JPF executes bytecode instructions, we typically don't use that level of atomicity during model checking,
rather we use one JAVA statement or one line of JAVA code as being one transition.



a reference to the compressed state on the stack and leave the state itself in the hash-table. Reconstructing
the state is quite straight-forward because the collapsed information contains the indexes of the di�erent
components of the state that just need to be put back together again via a reverse lookup in the pools (i.e. the
original component corresponding to an index must be retrieved). For e�ciency only the components that
are actually changed are restored. Figure 1 also shows the memory usage after introducing the optimization
of the backtrack. A slight dependency between memory used and stack depth is still present, but now most
of the memory is used to store the states. It is interesting to see that the memory usage before and after the
optimization intersect where the stack depth comes down to zero { or very close to it.

Table 1 contains the results obtained using this more optimized backtracking technique. It is not evident
how the memory usage is optimized (see Figure 1) because the same amount of memory is used when the
search is �nished. But the execution time is considerably reduced, because it is not necessary to put a copy
of the state on the stack anymore.

2.4 Exploiting Symmetries

Symmetries have been used in model checking to reduce the size of the state space [EJ93] [ID96] [CEJS98]
[CFJ93] [BDH00]. The basic idea is to visit a subset of the state space that is representative of the whole
state space based on a symmetry relation that does not inuence the properties being checked. Typically
symmetry reductions exploit the structure of the system being analyzed, e.g. identical processes, scalar sets
etc. [BDH00] [ID96]. In keeping with the focus of the paper we exploit symmetries that will be inherent to
dynamic systems, and hence we address symmetry issues on the underlying state representation rather than
symmetry within the state itself.

class A {

public static int value = 0;

}

class B {

public static int value = 1;

}

Symmetry States Transitions

no 82 152

yes 70 132

class Main extends Thread {

public static void main(String[] args) {

new Main(true).start();

new Main(false).start();

}

public int x;

private boolean a;

public Main(boolean a) {

this.a = a;

}

public void run() {

if(a) {

x = A.value;

} else {

x = B.value;

} } }

Fig. 2. Static area symmetry reduction

Speci�cally we want to exploit the symmetry when classes are loaded into the static area and when
objects are created in the dynamic area. Recall from section 2.1 that both the static and dynamic area are
implemented as arrays, but the exact position of a class or object in these arrays should not be relevant
when comparing states. Nondeterminism, either from concurrency or the environment, can cause classes to
be loaded or objects to be created in di�erent orders along di�erent execution paths.

Comparing all possible permutations of the array entries when comparing states is however very computa-
tionally expensive, and hence we decided to rather use a canonization function to achieve e�cient symmetry
reductions. The idea is the following: whenever a state is generated calculate a canonical representation of the
state and use this representation for state comparisons. The use of a canonization function is a well-known
technique for achieving symmetry reductions [BDH00] [ID96], but calculating this function can be very ex-
pensive [CEJS98] in itself. However, since we are only interested in a limited form of symmetry reduction,



we can calculate the canonical state representation very e�ciently by imposing an order on the entries in
the static and dynamic area. Due to the dynamic nature of Java programs, this ordering must be calculated
during model checking. Also, since we use the position of classes and objects as references, an ordering that
would require positions to change would be ine�cient. The idea is to dynamically map each class (object) to
a position in the static (dynamic) array when the class (object) is �rst loaded (created). When backtracking,
this mapping is preserved, and reused when executing down a di�erent path.

Figure 2 shows a piece of code where two classes { A and B { are loaded when one of their static �elds is
accessed. Two threads are executing each one accessing a di�erent class. Depending on the scheduling class
A can be loaded before class B or vice-versa. Without symmetry reduction, if classes are allocated in the
static area in the order they are loaded, the two interleavings above would lead to two di�erent states, one
where A occupies the position before B and the other where B is in front of A. With symmetry reduction
we keep a mapping of class names to positions with respect to which class got loaded �rst, and hence we
see a reduction in the number of states (see table in Figure 2). Note that for classes we could have chosen
an alphabetical ordering, but this would violate the condition that positions must not change due to the
ordering.

class ThreadOne extends Thread {

public Object o;

public void run() {

o = new Object();

} }

class ThreadTwo extends Thread {

public Object o;

public void run() {

o = new Object();

} }

class Main {

public static void main(String[] args) {

new ThreadOne().start();

new ThreadTwo().start();

} }

Symmetry States Transitions

no 54 89

yes 30 51

Fig. 3. Dynamic area symmetry reduction

Since class names are unique this simple mapping of names to positions is su�cient to achieve a canonical
representation for the static area. The dynamic area is not quite as straight-forward, since objects do not
have names and hence the di�erent object created cannot be so easily identi�ed. Our �rst guess was to use
the bytecode instruction that created the object to identify it: this works �ne (see results in Figure 3) as long
as each instruction is executed at most once during each execution path. However allocation instructions can
be executed more then once and create more than one object (e.g. an allocation within a loop). To deal with
that we added to the identi�er of an object the occurrences of the instruction, i.e. the number of times that
instruction has been executed before. Note that this occurrence number is incremented for an allocation,
and also decremented whenever the allocation is backtracked.

This is su�cient to identify an object, but it might not lead to the most e�cient symmetry reduction
result. In Figure 4 the same bytecode instruction is executed by two di�erent threads. The number of
occurrence with which each thread executes the instruction depends on the interleaving and therefore so
does the position of the objects in the dynamic area. One way to address this problem is to add to the
identi�er of an object the thread that created the objects and count the number of occurrences of the same
instruction in each thread separately (see last row in the table in Figure 4).

The same basic approach has been applied to the static and dynamic areas. For the dynamic area { since
there is no unique identi�er for an object other then the position in the dynamic area itself { it is necessary to
use some other information (the bytecode instruction that created the object, the number of occurrences that
instruction had before, the thread that created the object) in order to create a dynamic ordering. Although
we showed results on small examples in this section, the di�erence symmetry reductions can make on more
realistic examples is quite good: e.g. without symmetry reductions the BoundedBu�er example from Table 1



class ThreadOne extends Thread {

public Object o;

public void run() {

o = Main.newObject();

} }

class ThreadTwo extends Thread {

public Object o;

public void run() {

o = Main.newObject();

} }

class Main {

public static void main(String[] args) {

new ThreadOne().start();

new ThreadTwo().start();

}

public static Object newObject() {

return new Object();

} }

Symmetry States Transitions

no 122 237

yes 86 168

thread 68 135

Fig. 4. One instruction can be called by di�erent threads

has 2502761 states and only 105682 with symmetry reduction (i.e. a 25 fold reduction). Furthermore, the
time overhead is almost non-existent: when applying symmetry reduction to an example that have no such
reductions we see a 1% increase in the execution time.

The symmetry reduction presented in this paper is orthogonal to other kind of symmetries based on the
structure of the system, and therefore they could be used together. Note, that unlike [ID96] [BDH00] we don't
require an extension of the model checker input language in order to achieve e�cient symmetry reductions.
Lastly, some of the symmetries that are exploited here are due to di�erent interleavings of some thread
execution. Partial order reduction techniques avoid exploring some of those interleavings, and therefore it
can mitigate the e�ect of our symmetry reduction. However our method can reduce symmetries that cannot
be avoided by partial order reductions, but more importantly, can be applied without requiring expensive
static analysis to determine transition independence.

2.5 Garbage Collection

Java does not o�er any primitive to deallocate an object. Once created an object will continue to exist until
it is garbage collected. An object can be garbage collected when no more references to it are available.

public class Main {

public static void main(String[] args) {

Object o;

while(true) {

o = new Object();

} } }

Fig. 5. Even a simple example can have in�nite states

If we want to model check software written in Java we need to take into account garbage collection. Many
Java programs rely on its presence, and even very simple examples { see Figure 5 { would have an in�nite
number of states without garbage collection (each allocation grows the size of the state, hence causing
an in�nite state-space). Garbage collection during model checking was �rst introduced in [IS00] and we
implemented the same two algorithms, namely reference counting and mark and sweep, in JPF. The results
presented in Table 2 show how reference counting and mark and sweep perform in our implementation. Three
examples are analyzed:



{ TempObj creates many temporary objects;

{ NoGarbage adds elements to a list but never removes them, creating no objects to be collected; and

{ DoubleLinked creates a double linked list and then loses the only pointer to it.

All these examples include concurrency (two or more threads are executing the same operations concur-
rently). In the table the following have been reported: the number of states, the number of transitions, the
memory usage (at the end of the veri�cation), the execution time, and the number of objects collected (with
the number of times the algorithm has been activated for mark and sweep).

Memory Time GC

TempObj States Transitions (MB) (sec) objects(runs)

no GC 609173 1276971 168.26 508.24 -(-)

Mark and Sweep 2923 7110 1.1 5.73 2750(4286)

Reference Count 2923 7110 1.1 6.48 2750(-)

Memory Time GC

NoGarbage States Transitions (MB) (sec) objects(runs)

no GC 833766 1812626 216.88 520.26 -(-)

Mark and Sweep 833766 1812626 216.95 646.43 0(1241203)

Reference Count 833766 1812626 216.95 621.90 0(-)

Memory Time GC

DoubleLinked States Transitions (MB) (sec) objects(runs)

no GC 124503 310006 71.31 99.18 -(-)

Mark and Sweep 124503 310006 33.45 101.98 35928(231163)

Reference Count 124503 310006 71.37 120.01 0(-)

Table 2. Results obtained with GC

The �rst example { TempObj { is heavily a�ected by garbage collection. The fact that temporary objects
are created { which is quite common in Java { adds extra information to the state that makes equivalent
states seem di�erent if garbage collection is not active. The memory requirement are the same for both
algorithms, but the mark and sweep is slightly faster, since the ratio of objects collected per run is quite
high (this is not the case for the other two examples).

The second example { NoGarbage { shows the overhead introduced by the two algorithms, since this ex-
ample does not produce any object to be collected. The extra memory is about the same for both algorithms,
but that's not true for the execution time. The mark and sweet algorithm is activated many times and that
is reected in the higher execution time: almost 70% of the transitions cause the algorithm to be executed.
The algorithm is activated only after an instruction that can produce garbage: unfortunately many of the
bytecode instructions can.

The last example { DoubleLinked { leads to two considerations. First, the reference count algorithm is
not able to detect cycles of garbage. As a consequence no garbage is detected by this algorithm. Secondly,
even when garbage is found with the mark and sweep algorithm, the state space is not reduced: the reason is
that states with their garbage removed are still di�erent because of other variables in the program. However,
there is a reduction in the memory since states from which garbage was collected are now smaller than
before.

Note, unlike the case for dSPIN[IS00], where it was necessary to store the complete state on the stack
before garbage collection { because the state was changed in an irreversible way { we do not need to do so
because the collapsed version of the state is stored on the stack.



3 Distributed Memory

Explicit state model checking su�ers from the state explosion problem, and when analyzing software programs
this problem is more severe due to the higher-level of detail present in such programs. In order to deal with
this issue, many di�erent solutions have been tried, distributed model checking being one of them [LS99]
[SD97]. In this section we present how we improved this technique and adapted it to the dynamic nature
of the systems that can be checked with our tool. Our work is based on [LS99], that presents a distributed
memory implementation of SPIN. Our goal was to analyze the issues of implementing a distributed model
checker when the input model is a dynamic system, in order to guide us in the development of a parallel
model checker.

The algorithm presented in [LS99] extends the standard depth-�rst visit algorithm into a distributed visit
algorithm. This new algorithm is no longer depth �rst but it still visits all the states and paths of the system.
The only real issue with this algorithm is that it does not allow LTL model-checking, but this limitation had
been overcome in [BBS00].

The basic idea is to divide the state space in partitions. Each node { workstation { will store the states
that belong to one of the partitions. Every time a new state is reached a partition function is used to
determine which node is the owner of the state and the state is sent there for storage and analysis of the
state's successors. If the state has to be visited in the same node then the visit continues depth �rst from
that node. The node the starting state belongs to will start the visit while the others are waiting for incoming
messages. The search is completed when all nodes are waiting and all messages sent have been received. The
major issue with this algorithm is picking a partition function that minimizes the memory required by each
node, but at the same time limits the number of messages required between the nodes.

3.1 Improvements

The algorithm from [LS99] has been adapted to our system, at �rst without any modi�cation. After making
the tool operational we worked on some extensions, mainly aiming to reduce the communication overhead.
In [LS99] a modi�cation of the algorithm, called sibling storing, is presented which reduces the number of
messages sent. Each time a new state that needs to be sent to another node { sibling { is reached, a local
copy of the state sent is kept in the local hash table. If encountered again, no messages need to be sent, since
we know that it has been received by that node before. One issue with this technique is that the number
of siblings can grow quickly and consume too much of the memory, taking space that could be allocated to
store actual (local) states.

We developed a modi�ed version of this technique, that we called sibling caching, that stores the siblings
in a cache. When no empty space is left in the cache, the least recently used element is discarded and the
new sibling is added. This technique proved to be quite e�ective { see Table 3 { because a very limited size
cache performs, in terms of messages avoided, almost as good as complete sibling storing. Table 3 shows the
traditional partition algorithm (that uses a hash function over the complete system state for partitioning)
augmented with a number of optimizations techniques and compares these with respect to memory usage,
percentage of transitions that generates messages, i.e. how many states need to be sent to another node, and
lastly the time taken.

Another extension we developed is called children lookahead. This technique tries to avoid sending mes-

sages due to short paths that fall into another node's space. As can be seen in Figure 6, state s
(0)
i�1 is followed

by state s
(1)
i
. This generates a message from node 0 to node 1. When node 1 receives the new state it gener-

ates its successor s
(0)
i+1. This node needs to be stored by node 0 and so a second message is generated. This

last message could have been avoided if node 0 had checked the successors of s
(1)
i

for any state belonging to

itself { this operation is not very expensive because state s
(1)
i

has already been generated by node 0.
In order for this technique to work it is necessary to clearly specify who is going to take care of each

state. When a message is sent the sender will check for its own states among the successors of the sent state.
On the other hand the receiver will skip every state belonging to the sender that falls in the �rst generation
starting from the received state. This algorithm works also if there are more than two parties involved,
because the sender will just ignore states belonging to a third party, while the receiver will send the state to



RemoteAgent Memory MB Messages % Time (sec)

Normal 40.69 38 525.16

Sibling Storing 45.70 27 504.65

Sibling Caching (50) 40.10 34 518.52

Sibling Caching (200) 39.60 31 515.26

Sibling Caching (500) 39.19 28 511.77

Children Lookahead 29.67 31 320.75

Children Lookahead + Sibling Storing 33.83 23 296.87

Children Lookahead + Sibling Caching (50) 29.19 28 316.11

Children Lookahead + Sibling Caching (200) 29.14 28 314.61

Children Lookahead + Sibling Caching (500) 28.86 26 319.06

Table 3. Results using di�erent optimizations with the RemoteAgent example
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Fig. 6. Example of children lookahead

the correct node { therefore avoiding duplication. It is important however for the node to check for possible
states belonging to itself in the �rst generation of the state sent to the third node.

This technique avoids messages for runs that last only one state in another node's part of the state
space, but the technique can be generalized to an arbitrary number of steps, corresponding to the number
of generations that need to be checked. There exists a trade o� between the number of generations checked
{ and therefore the number of possible messages avoided { and the time overhead necessary to generate all
the successors { which grows exponentially with respect to the number of generations.

Some results can be seen in Table 3 where the same example has been executed with di�erent combinations
of the presented techniques: sibling storing reduces the number of messages more consistently than sibling
caching, but increasing the size of the cache { 50, 200, and 500 in the table { the percentage of messages gets
closer to the results obtained using storing. Children lookahead demonstrates very e�ective and orthogonal
to the other techniques. The results in term of message reduction are mirrored by the reduction in execution
time. The memory usage should be higher with sibling storing, decrease with the caching and being minimum
without any sibling algorithm. Nevertheless the experimental results give an anomalous behavior that we
were not able to explain.

State Transfer A di�erence between SPIN and JPF is where most of the execution time is spent: in SPIN
storing the state uses most of the time, while in JPF execution of the bytecode instructions is the most
expensive. This is due, in part, to the fact that in JPF transitions are more complex than in SPIN. This
di�erence can a�ect the design of the distributed version of the two tools. In [LS99] the communication



protocol between the nodes had been designed so that a path is sent to identify the state that needs to be
visited. This is consistent with the assumption that steps can be executed very e�ciently in SPIN. On the
other hand, in JPF an execution step is very time consuming so it would sound e�cient to send the state,
without any need for the path. In JPF however the state is a very complex structure that includes references.
At the early stages of the development we tried to send states, but the time necessary to translate the state
into something that can be sent on a socket was too high. Therefore our choice was to send the path and
use that information to reconstruct the state on the destination node. Although we are sending a path at
the moment we believe that when doing the implementation on a parallel architecture sending states would
become viable.

Another possibility that we are currently exploring is to send across a compressed version of the state.
Since the state is very e�ciently compressed by the tool for storing, it would be e�ective to send the
compressed state over the network. This is not at the moment possible because the pools used for the
compression are local to each node and therefore it would be impossible to reconstruct correctly the state
on the receiving node. One possible approach { that is particularly interesting in a parallel environment, but
it's still applicable in a distributed one { would be to centralize the pools used for the compression. This way
indexes for components of the state would be global and the compressed state could be easily and quickly
transferred between nodes. In order to reduce the communication each node could keep a copy of the entries
that it accessed from the centralized pool and only when a new entry has to be added, communication is
necessary.

3.2 Partitioning

Partitioning is a crucial point in the distributed algorithm [LS99]. Partitioning aims to achieve two contrasting
goals, with an obvious trade o�:

{ reduce the number of message that need to be transmitted; and
{ maintain a fair partitioning of the memory required on each node.

In [LS99] a few heuristics to determine a partition function are suggested. In [Ler00] a more complete
approach to the problem is given, and a tool to automatically generate a partition function from static
analysis of the input model is presented. However, because of the dynamic nature of the systems we address,
these kind of tools are more di�cult to implement due to the complexity of the static analysis required. We
will therefore focus on partitioning functions that can be calculated dynamically and compare them to static
partitioning functions that do not require any static analysis. In [Ler00] partition functions are classi�ed as:

static: the partitioning is made before the veri�cation is ran and no changes are possible once at run-time;
or

dynamic: the partition function is adapted at run-time using the information gathered during execution to
better suit the system that is being model checked.

These two kinds of partition functions have their advantages and disadvantages: static partitioning does
not require further communication to determine which node a state belongs to but it is hard to come up with
a good function, i.e. one that achieves both equal partitions and low communication. On the other hand,
dynamic partitioning requires a higher level of communication and complexity, but allows more versatility
(it is not model dependent) and equal partition size. All the partition functions used in [LS99] are static but
the algorithm presented does not rely on that assumption. Static partitioning is especially problematic for
a dynamic system, because it is hard to extrapolate what the behavior and structure of the system will be.
Therefore a dynamic approach, since it is not dependent on the system structure, seems more appropriate
when analyzing dynamic systems.

3.3 Static Partitioning

First we present some examples using static partitioning { Table 4 { that can be used as a reference for the
results presented further on. They are also important because { as we will see in Section 3.4 { these partition
functions are used as a basis for the dynamic ones.



RemoteAgent Memory % Messages % Time (sec)

Global Hash Code 50/50 38 525.16

Local Hash Code 50/50 46 551.28

Local Hash Code (1) 44/56 11 241.46

Local Hash Code (2) 47/53 13 263.57

Program Counter (1) 54/46 17 342.34

Program Counter (2) 48/52 25 487.43

Program Counters (1) 54/46 17 339.46

Program Counters (2) 43/57 14 326.66

Table 4. Di�erent static partition functions on the RemoteAgent example

The results in the table are for the RemoteAgent example and using two workstations. The di�erent
partition functions are reported in the �rst column, followed by the percentage of the total memory used by
each workstation, the percentage of transitions that cause messages to be sent, and lastly the time taken.

The Global Hash Code partition function uses a hash function to determine the partition: the function
is applied to the whole state and the partition is the result modulo the number of partitions. This solution
gives a fair division of the state space between the nodes, but at the same time, the number of messages
generated is pretty high.

A possible approach is to use the locality principle [LS99]: if the partition function relies only on the
information of a particular thread, only when that thread is scheduled is it possible to reach a state that
generates a message. As a �rst step we created a partition function { Local Hash Code { that uses the hash
codes from the thread list only. This implies that the value of the objects are not included in the hashing
process { only the stack frames and thread status of all threads. As a further step we limited this process to
a speci�c thread (indicated by a number in the table). The results, in terms of message ratio, are still not
very good for the function if applied to the whole thread list because at each step at least one of the program
counters will change, but if applied to a single thread, messages are reduced. The choice of the thread is also
important: the �rst thread { zero { is usually a bad choice (hence it was not included in the table), since it
is the main thread that often is simply used to create the threads that compose the real system. In general
a reduction of the messages is obtained, with a sacri�ce in the fairness of the partition.

As said before, in [Ler00] a tool to generate a partition function using static analysis has been presented.
Unfortunately, this tool cannot be applied, as is, here because it uses the ow control graph of a thread,
that is not as accessible as in SPIN. The idea behind it is to use the current state of a process to determine
the partitioning the state belongs to: on a similar path we tried to use the program counter of threads to
do this. Since the static analysis approach cannot be used, we just hashed the program counter. At �rst
sight the program counter seems to be the equivalent of the current state of a Promela process, but because
of the stack based approach, each thread has more than one program counter. At �rst we tried to use the
program counter from the topmost stack frame (rows saying Program Counter as partition function), then
we tried the same approach using a function of all the program counters from every stack frame (rows marked
as Program Counters). The result is a reduction of the percentage of messages, which is higher when the
function is applied to a speci�c thread. Note again, that the main thread (thread zero) is not shown, since
as before it is only used to start the rest of the system and hence leads to a very unbalanced partitioning.

An interesting observation is that one can either use too much information to calculate the partitioning,
in which case the partition is fair but creates too many messages (see Global Hash Code and Local Hash
Code) or one can use too little information (see Program Counter 1 and 2) with similar problems. Using just
enough information seemed to give the best results: Local Hash Code for a thread and Program Counters
per thread.

3.4 Dynamic Partitioning

The great advantage of dynamic partitioning is that no prior knowledge or static analysis of the system are
necessary: run-time information is used to keep the partitioning fair. Dynamic partitioning just means that
states can be stored in one node at a certain moment and in another one later on. In general a dynamic



partition function will initially assign a subset of the state space to each node and when a certain condition
arises { for instance lack of main memory { it will reassign some states to a di�erent node.

In our work we assume that at any given time each node knows where each state is supposed to be stored.
This means that a node does not need to interrogate every other node to know if a state has already been
visited, but can send it to the legitimate owner. This assumption can be dropped for the transitory after
a reassignment with the condition that nodes relay the incoming states that do not belong { anymore { to
them to the correct designated node.

One issue that arises at this point is how to represent a partition function that can change during time. It
is necessary for some sort of table to specify which state is stored where. It is obvious that the granularity of
this table cannot be the single state, otherwise the size of the table would be of the same order of magnitude
of the size of the whole state space. States can be grouped together: we called these groups of states classes.
It is clear that the classi�cation is equivalent to the partitioning. The assumption we made here is that the
same techniques used for determining static partition functions can be used to determine a classi�cation
function. What is important is that classes do not need to be the exact same size. In fact the number of
classes is greater then the number of partitions, and each partition consists of a set of classes: at run-time
classes will be grouped together into partitions and when a partition's size is too big, part of it { a class { can
be assigned to another node. Still important is to minimize the number of potential messages between two
classes, but we don't have a strong trade o� like we used to. This solves the problem of having an excellent
partition function, since an average classi�cation function can give optimal results.

When a reassignment is issued the states that have already been visited but now belong to a di�erent
partition have to be discarded. It is not e�cient { at least in a distributed environment { to transfer that
information across the network. The node those states are assigned to will rediscover those states { if they
will ever be met again { without actually inuencing the result of the computation, just extending the search
{ since some states may be visited more than once.

RemoteAgent Memory % Messages % Time (sec)

Global Hash Code 50/50 38 524.02

Local Hash Code 50/50 46 531.17

Local Hash Code (1) 48/53 11 216.56

Local Hash Code (2) 48/52 13 281.25

Program Counter (1) 52/48 17 340.97

Program Counter (2) 48/52 25 487.46

Program Counters (1) 52/48 17 311.22

Program Counters (2) 49/51 13 333.78

Table 5. Results from dynamic partition with classes split equally.

Table 5 show the results obtained using di�erent dynamic partition functions based on the static ones
presented in the previous section. Half of the classes are initially assigned to each node and, if necessary,
they will be reassigned. When comparing these results with the static partition results from Table 4 it is
clear that in every case the dynamic partition achieves either a similar or better memory distribution and
runtime.

An important issue is to decide when a reassignment is necessary: an option would be to start it when
the number of states stored in one partition is too big compared to what is currently stored in the others.
However this is not a good idea, since having a greater amount of states stored in one partition is not
necessarily a problem until memory comes to exhaustion. It is better to wait until the memory become an
issue than keep the two partition at the same size during the whole visit { also because a class's size can
change, for instance if most of its states will be visited close to the end of the veri�cation.

Another issue is that, even when the memory is abundant, the two nodes have to communicate intensively
since the beginning, because the states have been divided as equally as possible before starting. One possible
optimization would be to store all the states { at least initially { on the same node and let the reassignment
and the dynamic algorithm do the work of obtaining a better partitioning. This last approach leaves all but



one node completely useless from the beginning up to the time the �rst node exhausts its memory resources
and starts splitting the state space { and the work { with the others. One disadvantage is that a lot of work
can need to be redone, because every time a class is reassigned a part of the state space that has already
been visited is lost. Table 6 show the results of doing this form of dynamic partitioning | the fairness of
the partitioning is still very good, but now the messages and hence the time is much reduced.

RemoteAgent Memory Messages % Time (sec)

Global Hash Code 47/53 16 251.74

Local Hash Code 47/54 13 150.09

Local Hash Code (1) 45/55 5 97.57

Local Hash Code (2) 53/47 7 125.09

Program Counter (1) 45/55 11 141.38

Program Counter (2) 44/56 11 134.14

Program Counters (1) 39/61 10 145.38

Program Counters (2) 48/52 14 182.00

Table 6. Results from having one node start with all the classes.

One possible way to avoid having idle workstations is to assign to each node a set of states that belong
to it, but let them, at the beginning, visit and store also other states. This way all nodes will start visiting
the state space at the same time without any need to send messages, because states can be stored in their
own hash table. When memory becomes an issue, those states that belong to others can be discarded to
make space for local states, but after that messages needs to be sent for nodes falling in that part of the
state space. At �rst this technique seems very similar to sibling storing but the di�erence is that states are
stored without sending a message. In fact if the successors of a given state are fully visited by one node, the
search will be correct even if later on this state will be discarded.

To clarify this technique let's suppose we have only two nodes. Initially both the workstations start the
visit until they reach a moment in time when memory becomes scarce. At this point each node will have to
discard a part of the state space. Let's assume for simplicity that only two classes were de�ned: each node
will keep one of them and reject the other. With a minimum amount of coordination { to avoid that both
reject the same class { both nodes now have only one class stored in their hash table. If we suppose for
simplicity again that both nodes got to the exact same point in the visit when they decided to reassign one
of their classes, no state would be lost, because each node is keeping what the other rejected { see Figure 7.

Node 0 Node 1

Node 0 Node 1

Reassignment

Fig. 7. How states are visited and discarded



This was a simpli�cation: in a more realistic scenario there would be a number of states that are lost, but
surely quite limited compared to the same situation where only one node had been running until the �rst
reassignment started. Moreover if more classes than partitions exist the same dynamic techniques applied
before can be used. At any time each class can be either stored by a speci�c node or shared among a set
of them. When memory is scarce a shared class can be discarded { making sure ahead of time that not
everybody else discard it at the same time { or a non-shared class can be transfered to another node. Table 7
shows results from this form of dynamic partitioning | note how the messages and time is even further
reduced from Table 6.

RemoteAgent Memory % Messages % Time (sec)

Global Hash Code 50/50 9 251.17

Local Hash Code 48/52 7 120.92

Local Hash Code (1) 52/48 3 74.46

Local Hash Code (2) 48/52 2 80.65

Program Counter (1) 38/62 4 113.21

Program Counter (2) 49/51 4 122.66

Program Counters (1) 48/52 5 112.46

Program Counters (2) 52/48 3 113.84

Table 7. Results from having two nodes start together.

4 Conclusions

Program model checking is an area of active research since the importance of software and its failures is
increasing. Model checking of software presents speci�c issues that are due to the complexity and the dynamic
nature of programs. Translation-based approaches to model checking fail to deal with the speci�c issue since
they rely on underlying tools that are not designed to exploit program speci�c issues. We developed our
own model checking tool using a programming language, Java, as our input notation in order to be able to
overcome this limitation.

We �rst introduced a representation for the state that respects the paradigm underlying the input nota-
tion. In order to be able to explore the state space of a reasonable size we developed a compression algorithm
that exploits the structure of the system state. A novel approach to e�cient backtracking has been presented,
that reconstructs the state from the compressed version present on the stack. A novel approach to symmetry
has been introduced, that exploits symmetries inherent to the state representation. Garbage collection is
discussed as a further way to reduce the state space.

Even after applying state space reduction techniques programs are often still too large for the memory of a
single workstation: a distributed memory algorithm can overcome this. We show how an existing distributed
model checking algorithm can be extended to reduce communication overhead and do dynamic memory
balancing. We show results supporting our claim that dynamic partitioning of the state space over multiple
workstations is well suited to analyzing dynamic (Java) programs.

This paper focussed on techniques that can be applied without any prior knowledge of system structure.
We do however believe that many reduction techniques based on a-priori static analysis of the system, such
as slicing, partial order reductions, abstractions, etc., can improve the model checking process and should
be applied whenever possible.

In the future, we intend to further investigate the combination of static and dynamic reduction techniques
to combat the state explosion. Furthermore, we believe that parallel model checking will become more popular
in the future due to the use of such machines becoming more widespread. To this end we are currently
extending our distributed model checking algorithm to be used on a parallel shared-memory architecture
(SGI Origin 2000).
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